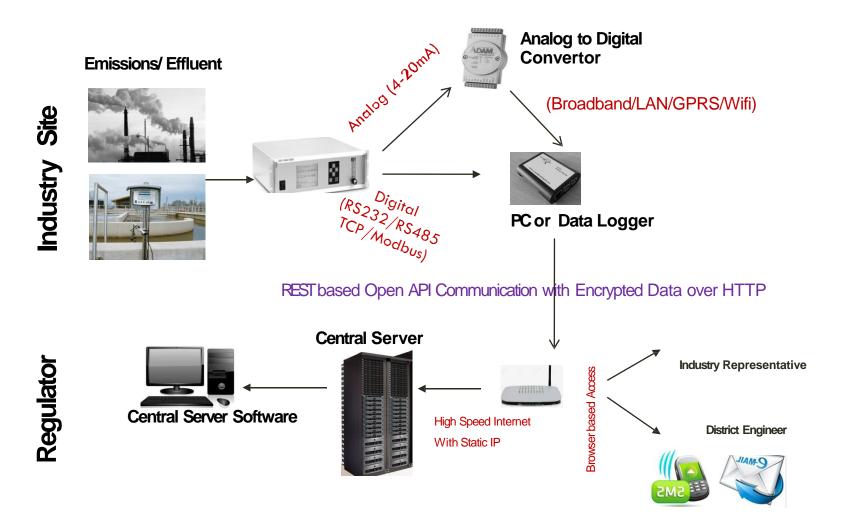
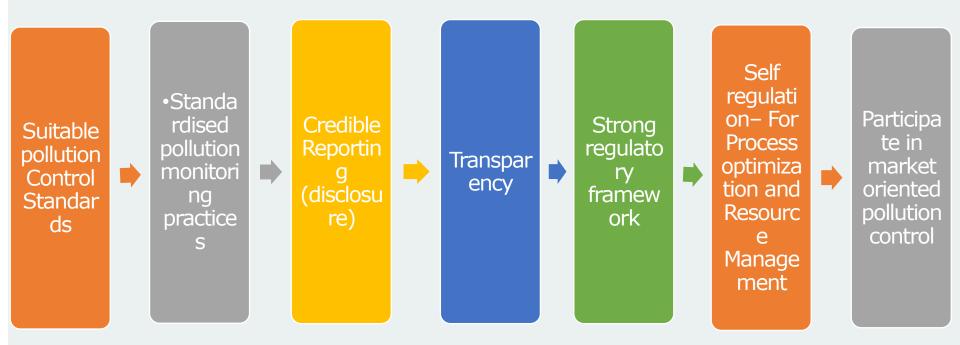
OCEMS


REQUIREMENTS & REGULATORY

GUIDELINES

J. S. Kamyotra

kamyotra@yahoo.co.in


Best Practices and Handling of CEMS in Emission Monitoring

Conceptual view of online monitoring

A good environmental governance regime paves the path for sustainable growth of a nation- assures quality environment, equitable growth, health & safety for its people while promoting growth.

HOW CENS STARTED

CPCB direction issued in Feb 2014

-17 categories of industries, ŒTPs, common bio- medical treatment facility, Common hazardous waste treatment facilities, municipal solid waste treatment

CPCB direction under National Ganga River Basin Authority Mission (NGRBA), March 2014

- For installation of real time effluent quality monitoring- nearly 800 industries

CPCB Guidelines for CEMS- August 2017; Guidelines Revised in Aug 2018-

Mandated for RED category industries in revised guidelines.

OCEMS (Online CONTINUOUS EMISSIONS / EFFLUENT MONITORING SYSTEM)

The system composed of Equipment, Instrument to draw, condition, analyze the Effluent or Emission sample and provide permanent record of emissions or process control parameters continuously at real time basis is called Continuous Emissions Monitoring System (CEMS)

COMPONENTS OF A CEVIS

- Sample Collection sampling device
- Interface Sample conditioning & transportation wherever required
- Analyzer Specific to pollutants, generates an output signal proportional to the concentration
- Calibration devices Analyzer control system,
- calibration gases, recording etc.
- Data Acquisition Data logging system record electrical signals in defined number of channels
- Data Handling System— Pick, calculate, record, transfer
- the data in report form to desired destination
- Additional Devices: Flow Rate (Velocity Monitor, Temperature sensor, Moisture monitoring device, Diluent Gas monitoring Devices

Benefits of OCEMS

Provides real time data.

Time series analysis possible with continuous data.

Helps optimization in process control

Remotely accessible to operator/regulator. Continuous performance check of Air Pollution Control Devices and optimization of resources used.

Greater transparency

in monitoring of performance. Develop confidence in Market Reduction in regulatory cost as well as long term monitoring cost.

Expected better compliance through self regulation by industry hence lower emission.

Can open market driven pollution control venture (ETS)

17 CATEGORIES OF INDUSTRY, THEIR EMISSION STANDARDS AND PROBABLE OPTIONS FOR CEMS

		Dellatente Encienien Lincite	
SN	Industries	Pollutants Emission Limits	Recommended CEWS Options
	Aluminium Smelting		
	Raw Material Handling	PM – 150	In situ PM CEMS
	Calcinations	PM – 250	NDIR for CO
		CO – 1% (Max)	FTIR for CO and F
	Green Anode Shop	PM – 150	DOAS for all
	Anode Bake Oven	PM – 50	
		Total Fluoride – 0.3 Kg/MT of Al	
	Potroom	PM – 150	
		Total Fluoride – 2.8 Kg/MT of Al	
		for Soderberg Technology	
		Total Fluoride – 0.8 kg/t for Pre-baked	
		Technology	
2	Basic Drugs & Pharmaceuticals	For incinerator	Preferably Extractive PM CEMS
	-		NDIR for CO
		HCI-50	IR GFC, FTIR, DOAS for multi-gas
		SO2 – 200	analysis
		CO – 100	FID for HC (TOC)
		TOC – 20	PCDDs , Metals not possible by
		PCDDs /F – 0.2ng TEQ/NM ³ (existing)	CEMS
			Chemiluminescence
			UV-Fluorescence
		2009)	
		Metals – 1.5	

SN	Industries	Pollutants Emission Limits	Recommended CEIVIS Options	
3	Chlor Alkali (Hg Cell) (H ₂ Gas stream) (Hypo- tower) (HC Plant)	Hg – 0.2 mg/Nm ³ Cl ₂ – 15 mg/Nm ³ HCl vapour and Mists – 35 mg/Nm ³	FTIR for multi-gas	
4	Cement Plant			
	Rotary Kiln-without co-processing Rotary Kiln with co-processing	PM-30 mg/Nm ³ SO2- 100,700,1000 mg/Nm ³ (Pyrite Sulphure 0.25%, 0.5 %, 1.0 %) NOx – 600 (New), 800 (Existing) PM-30 mg/Nm ³ SO2- 100,700,1000 mg/Nm ³ (Pyrite Sulphure 0.25%, 0.5 %, 1.0 %) NOx – 600 (New), 800 (Existing)	Preferably Extractive PM CEMS NDIR for CO IR GFC, FTIR, DOAS for multi- gas analysis FID for HC (TOC) PCDDs , Metals not possible by CEMS	
	Rotary Kiln with co-processing	HCI- 10 mg/Nm ³ HF – 1 mg/Nm ³ TOC – 10 mg/Nm ³ Hg and its compounds – 0.05 mg/Nm ³ Cd+TI and their compounds – 0.05 mg/Nm ³ Sb+As+Pb+Co+Cr+Cu+Mn+Ni+V and their compounds – 0.5 mg/Nm ³ Dioxins and Furans – 0.1 ngTEQ/Nm ³	Chemiluminescence UV-Fluorescence	
	Vertical Shift Kiln	PM – 50 mg/Nm ³ (New) CPA/Urban Centre – 75 mg/Nm ³ (old) Others – 150mg/Nm ³ (old)		

SN	Industries	Pollutants Emission Limits	Recommended CEMS Options
5	Copper Smelting		
	Copper Smelting (Old Units) Copper Smelting (New Units)	PIVI—100 mg/Nm ³ PIVI – 75 mg/Nm ³	In-situ PM CEMS
	SO2 recovery units above 300 T	SO2 – 1370 mg/Nm ³ (Existing);1250 mg/Nm ³ (New) Acid Mist and Sulphur Trioxide –	UV Fluorescence, FTIR, DOAS
		90 mg/Nm ³ (Existing); 70 mg/Nm ³ (New)	
	SO2 recovery units above 300 T	SO2 – 1250 mg/Nm ³ (Existing) ;950 mg/Nm ³ (New) Acid Mist and Sulphur Trioxide –	
		70 mg/Nm ³ (Existing); 50 mg/Nm ³ (New)	
6	Dyes and Dye Intermedia		
	Captive Incinerator	PM – 50 mg/Nm ³	
		SO2 – 200 mg/Nm ³	
		HCl (Mist) – 50 mg/Nm ³	In situ PM CEMS
		$CO - 100 \text{ mg/Nm}^3$	IR GFC, FTIR, DOAS TLD, PAS for multi-
		TOC – 20 mg/Nm ³ PCDDs /F – 0.1ng TEQ/NM ³	gas analysis FID for TOC
		$Metals - 1.5 mg/Nm^{3}$	PCDDs, Metal not possible by CEMS
	Fermentation (Distillery)	Boiler Standard	In situ System for PM
8	Fertiliser (Phosphate)	PM - 150	In situ System for PM
		Total Fluoride – 25	FTIR, DOAS TLD, PAS for F
	Fertiliser (Urea) Old plants	PM – 150 or 2Kg/MT product	Velocity monitor
	Foulition (Lines) Newsymbols		

SN	Industries	Pollutants Emission Limits	Recommended CEMS Options				
9	Integrated Iron & Steel		In situ System for PM, IR GFC ,FTIR, TLD, DOAS, Chemiluminescence UV-Fluorescence				
	Sintering plant	PM – 150	NDIR for CO Velocity				
	Steel making	PM – 150 (Normal Operation); PM – 300 (Oxygen Lancing)	monitor				
	Rolling Mill	PM - 150					
	Coke Oven	PM - 50					
		SO2 - 800					
		NOx - 500					
		CO – 3 Kg/T coke					
	Refractory Material Plant	PM – 150					

SN	Industries	IndustriesPollutants Emission LimitsLeather Processing TanneriesBoilers Standard			Recommended CEMS Options
.0	Leather Processing Tanneries				In situ PM CEMS
.1	Oil Refinery				
	Furnace, Boiler and captive power plant Gas based	Polutants	Before 2008	After 2008	
		SO2 NOX PM CO Ni + V H ₂ S	50 350 10 150 5 150	50 250 5 100 5 150	BAM for PM IR GFC, FTIR, DOAS TLD, PAS
	Furnace, Boiler and captive power plant Liquid Fuel based	SO2 NOX PM CO Ni + V H ₂ S	1700 450 100 200 5 150	850 350 50 150 5 150	In situ PM CEMS IR GFC, FTIR, DOAS TLD, PAS for
	FCC Regenerator		Hydro	Others	multi-gas analysis or individual technology specific to
		SO2 NOX PM CO	500 400 100 400	1700 450 350 (N) 100 50 (N) 400	pollutants
		Ni + V % Opac.	5 30	300 (N) 2 (N) 2 30	CEMS Not Applicable for Metals Opacity
	CDU	H.S	15	10 (N)	THEFE

	Industries	Pollutants Emission Limits			Recommended CEMS Options
12	Pesticide	HCI - 20 CL2 - 5 H2S - 5 P2O5 (as H3PO4) - 10 NH3 - 30 PM with Pesticide - 20 CH3CI - 20 HBr - 5			IR GFC, FTIR, DOAS TLD, PAS P2O5, PM with Pesticide and CH3CI are not conventional CEMS parameter
13	Pulp & Paper	PM - 250 $H_2S - 10$			In situ System for PM IR GFC for H2S
14	Petrochemical	Polutants	Existing	New	In situ PM CEMS IR GFC, FTIR, DOAS TLD, PAS for
		SO2 (Gas) (Liquid) NOX (Gas) (Liquid) PM (Gas) (Liquid) CO (Gas) (Liquid)	1700 350 450 10 100 150	50 850 250 350 05 50 100 150	multi-gas analysis or individual technology specific to pollutants
15	Sugar	Boiler Standard	1		In situ PM CEMS

	Industrie	ries Pollutants Emission Limits			Recommended CEMS Options
16	Thermal	Power Plants	Emission Limits TPP before 31.12.2003 PM-100 mg/Nm ³ SO ₂ - 600 mg/Nm ³ (<500 MW -200 mg/Nm ³ (>500 MW NOx - 600 mg/Nm ³ Hg - 0.03 mg/Nm ³ (>500 MW TPP between 01.012004 & 31.12.2016 PM- 50 mg/Nm ³ SO ₂ - 600 mg/Nm ³ (<500 MW -200 mg/Nm ³ (>500 MW NOx - 450 mg/Nm ³ Hg - 0.03 mg/Nm ³ Hg - 0.03 mg/Nm ³ SO ₂ - 100 mg/Nm ³) W))	CEMS Options Insitu system for CEMS, IR-GFC, FTIR, DOAS, TLD Chemilumescemce, fluorescence
			NOx -100 mg/Nm ³ Hg – 0.03 mg/Nm ³		

Zinc Smelting (New Units)	PM-75			
SO2 recovery units upto 300 T	SO2 – 1370 mg/Nm ³ (Existing);1250 mg/Nm ³	FTIR, DOAS		
	-			
SO2 recovery units above 200 T				
SO2 recovery units above 500 T				
	-			
	70 mg/Nm ³ (Existing); 50 mg/Nm ³ (New)			
Boilers (According to capacity)		In situ PM CEMS		
		IRGFC, Chemilumisance UV – fluorescence		
Less than 2 T/hr		Concentration corrected to		
2–15 T/hr	1200 mg/Nm ³	-12 % CO ₂ concentration		
Above 15 T/hr.	150 mg/Nm ³			
Steam Generation				
	(Particulate Matter) Revision proposed*	*		
	1200 mg/Nm^3 500 mg/Nm ³	Measured values for PM, SO ₂ and NOx		
		to be normalised at 6 % O ₂ for solid fuels		
		and $3\% O_2$ for liquid fuels on dry basis		
		 For Coal /lignite based boiler TPP 		
		standards applicable		
		• 10 TPH and above boiler to install CEMS		
		for PM & SO ₂		
	O2, CO2 moni	toring is CO2 monitoring is a complementary part of		
	renotified Flow/Velocity essential whe	monitoring if extractive		
Notes:				
		Selected.		
	Zinc Smelting (New Units) SO2 recovery units upto 300 T SO2 recovery units above 300 T Boilers (According to capacity) Less than 2 T/hr 2 – 15 T/hr Above 15 T/hr. Steam Generation less than 2 TPH 2 to less than 10 TPH 10 to less than 15 TPH 15 to above	Zinc Smelting (New Units) PM – 75 SO2 recovery units upto 300 T SO2 - 1370 mg/Nm³ (Existing);1250 mg/Nm³ (New) SO2 recovery units above 300 T Acid Mist and Sulphur Trioxide – SO2 recovery units above 300 T 90 mg/Nm³ (Existing); 70 mg/Nm³ (New) SO2 recovery units above 300 T SO2 - 1250 mg/Nm³ (Existing); 950 mg/Nm³ (New) SO2 recovery units above 300 T Acid Mist and Sulphur Trioxide – 90 mg/Nm³ (Existing); 50 mg/Nm³ (New) SO2 - 1250 mg/Nm³ (Existing); 950 mg/Nm³ (New) Boilers (According to capacity) Particulate Matter Less than 2 T/hr 1600 mg/Nm³ 2 - 15 T/hr 1200 mg/Nm³ Above 15 T/hr. 150 mg/Nm³ Steam Generation (Particulate Matter) less than 2 TPH 1200 mg/Nm³ 2 to less than 10 TPH 1200 mg/Nm³ 10 to less than 15 TPH 150 mg/Nm³ 150 mg/Nm³ 500 mg/Nm³ 150 mg/Nm³ 500 mg/Nm³ 150 mg/Nm³ 50 mg/Nm³ 150 mg/Nm³ 50 mg/Nm³ 150 mg/Nm³ 50 mg/Nm³ 150 mg/Nm³ 50 mg/Nm³		

COMMON HAZARDOUS WASTE INCINERATOR

	A. Emission		
	Limiting concentration in mg/Nm ³	Sampling	Recommended
	unless stated	Duration in	CEMS
		(minutes)	
		unless stated	
Particulate Matter	50	30	
HCL	50	30	Preferably Extractive
SO ₂	200	30	PM CEMS
СО	100	30	NDIR for CO
	50	24 hours	ir gfc, ftir, doas
Total Organic Carbon	20	30	for multi-gas analysis
HF	4	30	FID for HC (TOC)
NO_x (NO and NO_{27} expressed as	400	30	PCDDs , Metals not
NO ₂			possible by
Total dioxins and Furans	0.1 ngETQ/Nm ³	8 hours	CEMS
Cd+Th+their Compounds	0.05		
Hg and its Compounds	0.05	2 hours	
Sb+As+Pb+Co+Cr+Cu+Mn+Ni+	0.50		
V+ their Compounds			

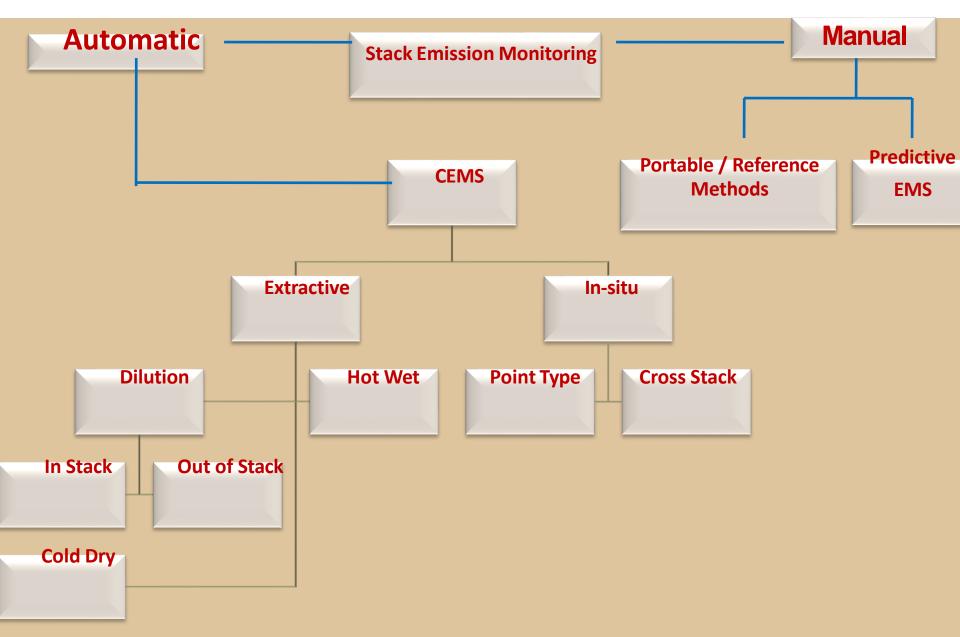
Notes:

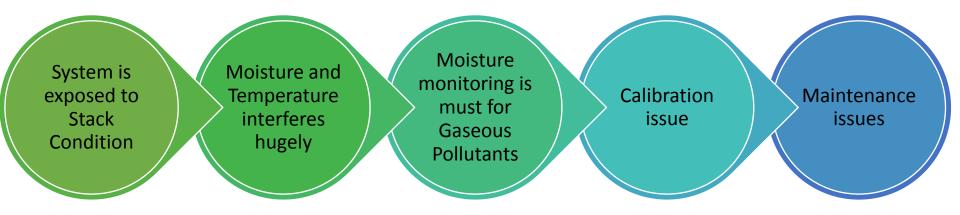
i.All monitored values shall be corrected to 11 % oxygen on dry basis.

ii. The CO₂ concentration in tail gas shall not be less than 7%.

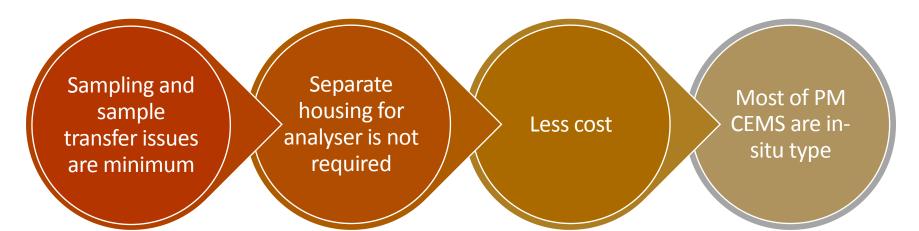
iii.In case, halogenated organic waste is less than 1% by weight in input waste, all the facilities in twir chamber incinerators shall be designed to achieve a minimum temperature of 950°C in secondary combustion chamber and with a gas residence time in secondary combustion chamber not less than 2 (two) seconds.

iv.In case halogenated organic waste is more than 1% by weight in input waste, waste shall be incinerated only in twin chamber incinerators and all the facilities shall be designed to achieve a minimum temperature of 1100°C in secondary combustion chamber with a gas residence time in secondary combustion chamber not less than 2 (two seconds).


v.Incineration plants shall be operated (combustion chambers) with such temperature, retention time and turbulence, as to achieve Total Organic Carbon (TOC) content in the slag and bottom ashes less thar 3%, or their loss on ignition is less than 5% of the dry weight].


Parameter to be monitored (Online)

Category	Effluent Parameters(13)		Emission Parameters(7)
Aluminium	pH, BOD, COD, TSS, Flow		PM, Fluoride
Cement	-		PM,NOx,SO ₂
Distillery	pH, BOD,COD,TSS, Flow		PM
Dye and dye	pH, BOD,COD, TSS, Cr, Flow		-
Chlor Alkali	pH, TSS, Flow		Cl ₂ ,HCl
Fertilizers	pH, flow, Ammonical Nitrogen, F		PM, Fluoride, NH3
Iron & steel	pH, Phenol, cyanide, flow		PM,SO ₂
Oil refinery	pH, BOD,COD,TSS, flow		PM,CO,NOx,SO ₂
Petrochemical	pH, BOD,COD,TSS, flow		PM,CO,NOx,SO _{2,}
Pesticides	pH, BOD, COD, TSS, Cr, As , flow		-
Pharmaceutical	pH, BOD, COD, TSS ,Cr ,As, flow		-
Power Plants	pH, TSS, Temperature		PM,NOx,SO ₂
Pulp & paper	pH, BOD, COD, TSS ,AOx, flow		-
Sugar	pH, BOD,COD,TSS, flow		-
Tannery	pH, BOD, COD, TSS, Cr, flow	-	
Zinc	pH, TSS, flow	PM SO ₂	
Copper	pH, TSS, flow	$PMSO_2$	


Methods & Options for Source Emission Monitoring

Challenges in In-situ CEMS

Advantages in In-situ CEMS

Challenges for Extractive CEMS

- PM Sample has to be drawn from Stack iso-kinetically
- Distance from source and analyser
- Positive Bias of Secondary PM
 Advantages of Extractive CEMS
- Wet Stack emission can be monitored
- Measurement ranges of analyser may be maximized
- Size fractionation is possible
- Maintenance is less compared to in-situ system

PM CEMS TECHNOLOGY SELECTION – STACK CHARACTERISTICS MATRIX

Parameter	DC Tribo	AC Tribo	Light Scatter	Opacity	Light	Extrac	tive
			5		Scintillation	Light Scatter	BAM
Units of Measured Value	g/s, kg/hr	mg/m3, g/s, kg/hr	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3
Velocity Monitor Required	X	~	~	~	✓	√	~
Duct <1m Diameter	~	~	~	X	X	√*	√*
Duct >1m to 4m Diameter	√	~	✓	~	~	√*	√*
Duct >4m Diameter	X	X	X	~	~	√*	√*
Electrostatic Precipitator	X	√ ₩₩	✓	✓	~	√	✓
Stack Gas Temperature > 500ºC	X	√ *≫*	√	~	√	√	~
Wet Scrubber or Water Droplet <70°C	X	√ *≫*	X	X	X	√	~
Large particles >20um	\checkmark	~	X	~	√	X	~
Dust> 100 mg/m3	~	~	√ ****	~	~	X	~
Varying gas velocity	\checkmark	√ ***	~	~	~	√ **	✓

* Primary Wet Stack, ** Worked on slowly varying velocity, *** ESP/Wet scrubber, *** Meas.upto 300 mg/m³

Summary of Technology Options for Gaseous CEMS

Technique	Туре	Gases Measured	Comments
-			
Chemiluminescence	Extractive Extractive	NO, NO _X , NO ₂ * SO ₂ (H ₂ S, TRS)	*NO ₂ calculated (NO _X – NO) Gases in brackets can also be
			measured but not
			simultaneously
IR Gas Filter	Extractive	$CO, CO_2, NO_X, SO_2,$	Multiple gases can be
Correlation (GFC)		N ₂ O	monitored, generally no more than 2-5.
Fourier Transform	Extractive /	CO, CO ₂ , SO ₂ , NO _X ,	Multiple gases can be
Infra-red	Exclusion	HCI, HF etc.	monitored, typically 5+
(FTIR)	Path		
Differential optical	Path	CO, CO ₂ , SO ₂ , HCI,	Multiple gases can be
absorption		HF, NO, NO ₂ , NH ₃ ,	monitored, typically 5+
spectroscopy (DOAS)		VOCs, H ₂ O	NO ₂ measured directly. Additional gases can
			be added at relatively low cost.
Flame Ionization	Extractive	Total HC	Requires hydrogen carrier gas.
Detector (FID)			
Tunable Laser Diode	Path	HCI, HF, NH ₃ , CH ₄ ,	Cost effective for single
(TLD)		CO, CO ₂ , H ₂ O	component applications.
Zirconia oxide cell	In-situ	O ₂	Widely used, maximum
			temperature generally 500°C
Paramagnetic	Extractive	O ₂	2010 (2010)
Photo acoustic	Extractive	CO, CO ₂ , SO ₂ , HCI,	Can measure virtually any gas
spectroscopy		HF , NO, NO ₂ , NH_3 ,	that absorbs IR.
(PAS)		VOCs, H ₂ O	Detailed analysis of other
			compounds that
			may be present other than target gases required.
Transmissometry	In-situ	Opacity (smoke), &	2400Hz intensity controlled LED
(Laser Optical		Total PM (dust)	& Solid State Diode Laser
Backscatter)			

FEW MANDATORY ADDITIONAL REQUIREMENTS FOR FULL PROOF SYSTEM

- Flow Monitor / Velocity Monitor (Mandatory Wherever Load based Standards are Given
- Stack Temperature Monitoring (Mandatory)
- Moisture Monitoring Device (Mandatory in system with large fluctuation in % Moisture)
- O₂/CO₂/CO monitoring as per regulatory requirement
- Extractive dilution system should have Cal gas injection facility at sampling point to Calibrate the system not only analyser

REGULAR PERFORMANCE EVALUATION PROCESS Instrument health checking: fixed time (10.00 a.m.) using

- Instrument health checking: fixed time (10.00 a.m.) using standard methods and standard reference materials.
- The health of the instruments/analyzers shall be assessed on daily basis at fixed time (10.00 a.m.) by checking the zero drift.
- Calibration verification shall be done on quarterly basis by empaneled laboratories.
- The instruments/analyzers shall be rechecked for zero and span drift every Friday. In case the daily zero drift is more than the acceptable limit as specified in the catalogue/brochure of the instrument/analyser manufacturer and persists continuously for five days, the instrument / analyser shall be recalibrated following procedure laid down at point (ii) above.
- In case the weekly span drift is more than the acceptable limit as specified in the catalogue brochure of the instrument/analyser manufacturer and persists continuously in the succeeding week the instrument/analyser shall be recalibrated following procedure laid down .
- Data capture rate of more than 85% shall be ensured.
- The comparison/ verification of data/calibration shall be done by empaneled laboratory once in 6 months.

ASKED QUESTIONS ?

How many stacks should be monitored?
 All consented stacks and effluent outlets

What are the parameters

Please follow the list of parameters as given in Guideline

•Whether Flow Monitor / Velocity Monitor is necessary at all stacks

No. Only at those stacks wherever load based standards are prescribed. In case of DC Tribo PM CEMS Flow monitor is mandatory.

•Whether Stack Temperature sensor is necessary at all stacks

Yes

•Moisture Monitoring Device is necessary at all stacks

No. It is mandatory for waste incinerator. Moisture monitoring is required where In situ gaseous monitoring systems are installed. It is also mandatory for Hot Wet Extractive system

FREQUENT INDUSTRY ENQUIRIES

• Which parameter is mandatory regulatory requirement O2/CO2 Diluents like O2 or CO2 are selectively required as specified in prescribed standards

How to report the emission (in ppm or in mg/NM3)
 All the pollutants shall be reported in mg/NM³

• Why Temperature, Diluents (O2/CO2) etc are required to be monitored As the prescribed standards are in dry and normalized condition the temperature and pressures are important. To ensure do excess air is present in emission diluents monitoring is required

FREQUENT ENQUIRIES OF THE INDUSTRIES

- •What should exactly be position of installation of sampling probe / device
- Ideal requirement is a laminar flow for emission monitoring. There should not be any control/dilution system beyond that point
 For water the point of sampling should be well mixed and there should not be any control/dilution system beyond that point

•Ideally both PM and Gaseous CEMS location of sampling plane is 8D downstream and 2D upstream from last disturbance point.

• If there is any Relaxation?

 Other locations for installation is allowed only after ensuring that there is no stratification

FREQUENT ENQUIRIES OF THE INDUSTRIES

How to Calibrate PM CEMS

It is the only comparison against Isokinetic sampling

•Is it required to do at different load conditions? Yes ideally it should be done atleast at three operational loads

How to Vary Load conditions?

It is really difficult for a running industry to vary operational load, however; calibration at different load is recommended for atleast once

•How many samples are required for PM CEMS calibration

Ideally it should be Nine at three load conditions. Minimum Six samples to calculate DUST FACTOR

• What is the frequency of calibration needed?

The validity of DUST FACTOR shall be Checked fortnightly with single monitoring. If it is not varying more than 20% the same Factor can continue. Otherwise normal frequency of calibration is six monthly

FREQUENT ENQUIRIES OF THE INDUSTRIES

Who will Calibrate PM CEMS

Till Date any NABL accreditated and EP approved laboratory can be engaged for calibration. Intermediate checks can be performed by industry itself.

• What is Zero Calibration?

Normally the instrument is operated in establishing two point's linearity, one zero and one span. Instrument's zero should be checked regularly with zero/inert gases. We should not call it zero calibration it is zero check only. Here adjustment is not allowed.

- What is the frequency of zero check?
- Daily
- What is Span Calibration?
- Span is the extreme point of the system calibration concentration.
- What is the frequency of span check?
- Once in a week

FREQUENT ENQUIRIES OF THE INDUSTRIES

• What is Instrumental Range?

•Instrumental range is the declared certified range of the instrument for respective parameters

• What should be the range of selected instrument?

•Basic for Instrumental range selection ELV * 2.5 to 3.0

- What should be the span gas concentration?
- The span gas concentration should be 75 80% of selected instrumental range.
- Does any multipoint calibration necessary?

•Yes; test of linearity shall be established with multipoint calibration at a frequency of once in a year

•Is it require to calibrate the whole system including conditioning

•Yes it is always preferred to perform system calibration. Extractive dilution system should have Cal gas injection facility at

-sampling point to Calibrate the system not only analyser

DATA ACQUISITION AND HANDLING

Accommodating any new requirements

•Data collection on Real Time basis without human intervention.

•Data Collection from any REAL TIME SYSTEM.

Generating ALERTS in case of violation of stipulated standards

Having Dashboards for facilitating SPCBs/PCCs/CPCB intelligent surveillance display for meaningful application of data. **Requirements of**

System

Collection of Performance criteria parameters & Health status of instruments

•Providing. data to all

stake holders without

delay

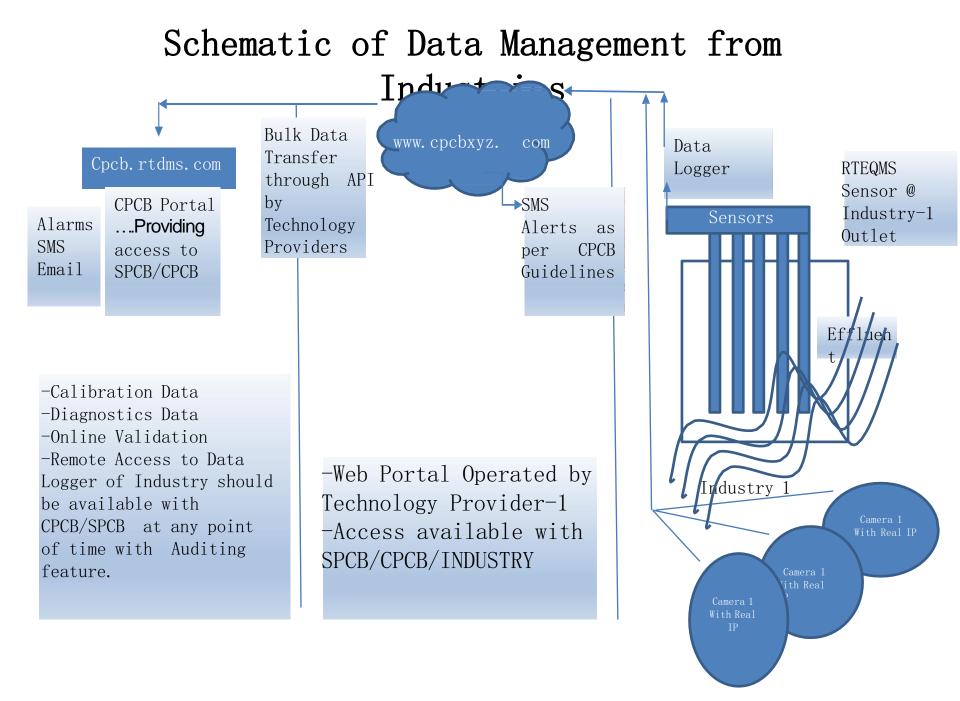
Providing a system of change request management with recording mechanism for data validation purpose.

Providing facility for online calibration check of systems.

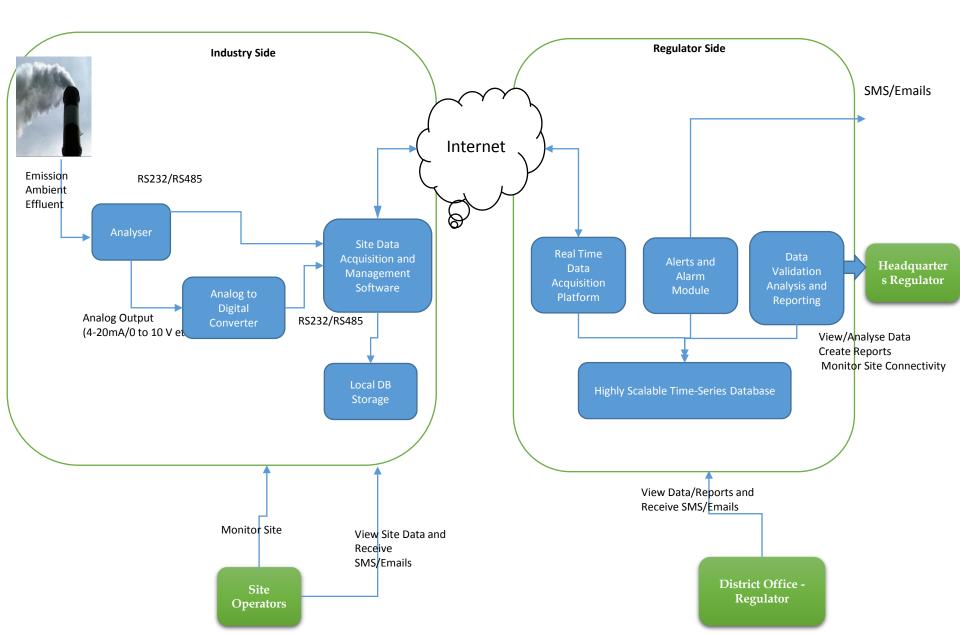
Providing tamper proof mechanism

Requirements of System Contd..

•Continuous **Transfer of Real** Time data for display on industry website & **Industry main** gate.


•Data storage effortlessly without data

loss.

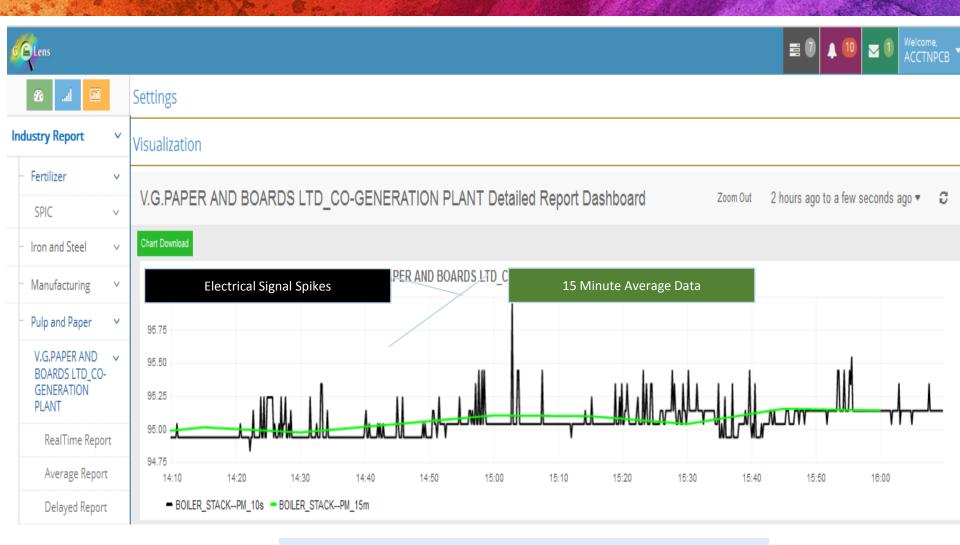


•Easily Deployable.

Creating a National **Database for Policy &** Decision Makers at a single GIS map.

Real Time Data Acquisition → Conceptual View

Challenges

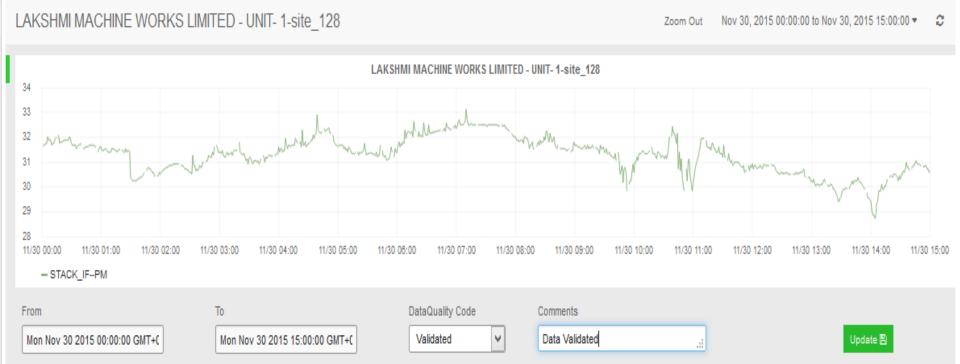

- What Parameters to Monitor?
- Which Analyser Principles are approved?
- What should be the analyser range of measurement?
- Which Software is accepted? Does it support all analyser make and model?
- Does the software support bi-directional communication?
- What technology is Software based on?
- Whether Physical Server or Cloud Server?
- Which Communication Medium is accepted?
- How much of data representativeness?
- What should be the frequency of data acquisition?
- What about Security of Data and Software?

Data Visualization Examples of Good Data

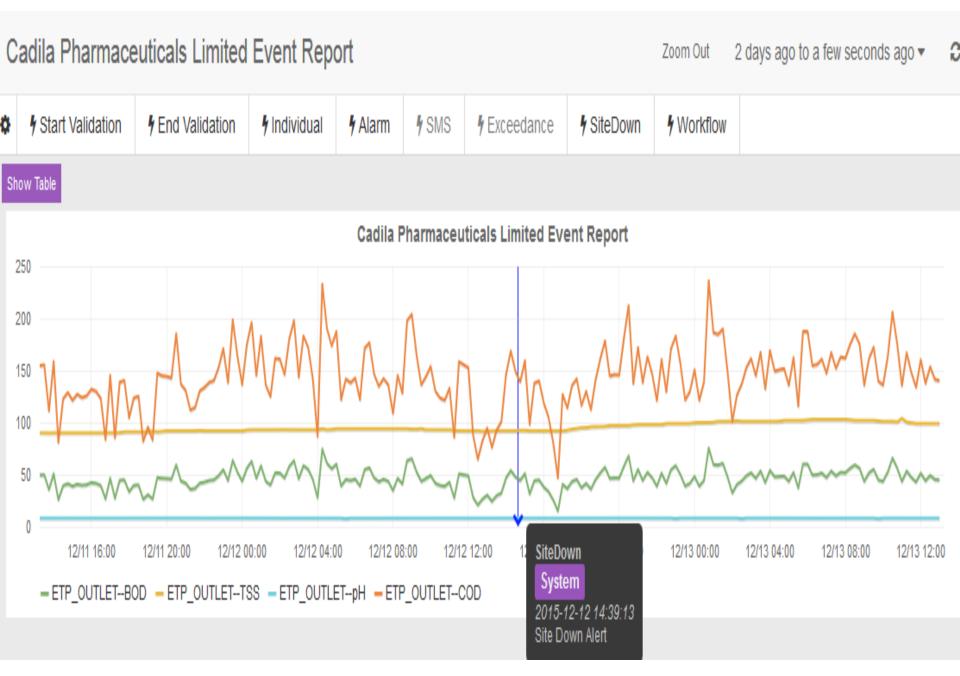
- (at least the OCEMS is responding)
- Calibration Verification required before validation and acceptance

Differentiating Signal Spikes from True Exceedances

Super imposing 10 Second data with 15 Minute Average

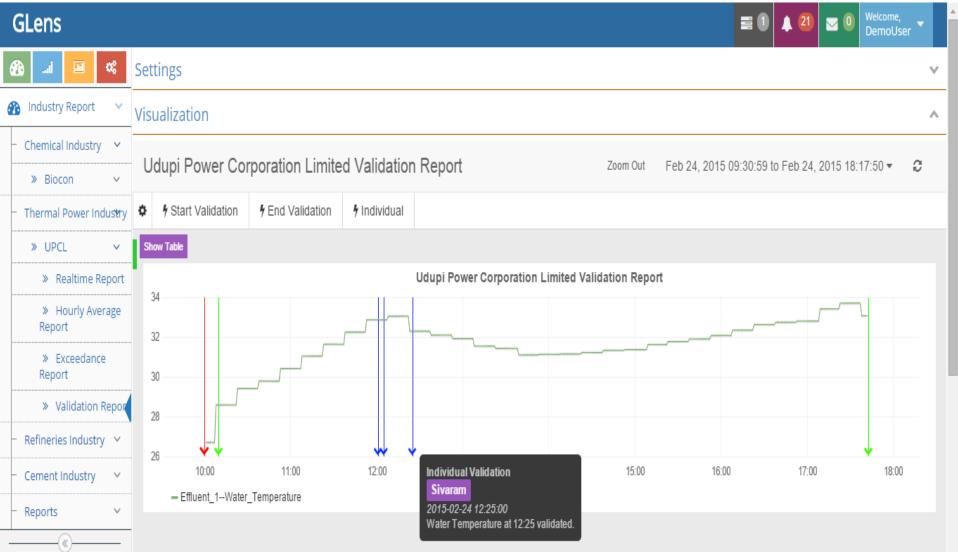

An Effective way to differentiate signal noise or spikes from true parameter exceedance

Data Validation and Annotation of the Data

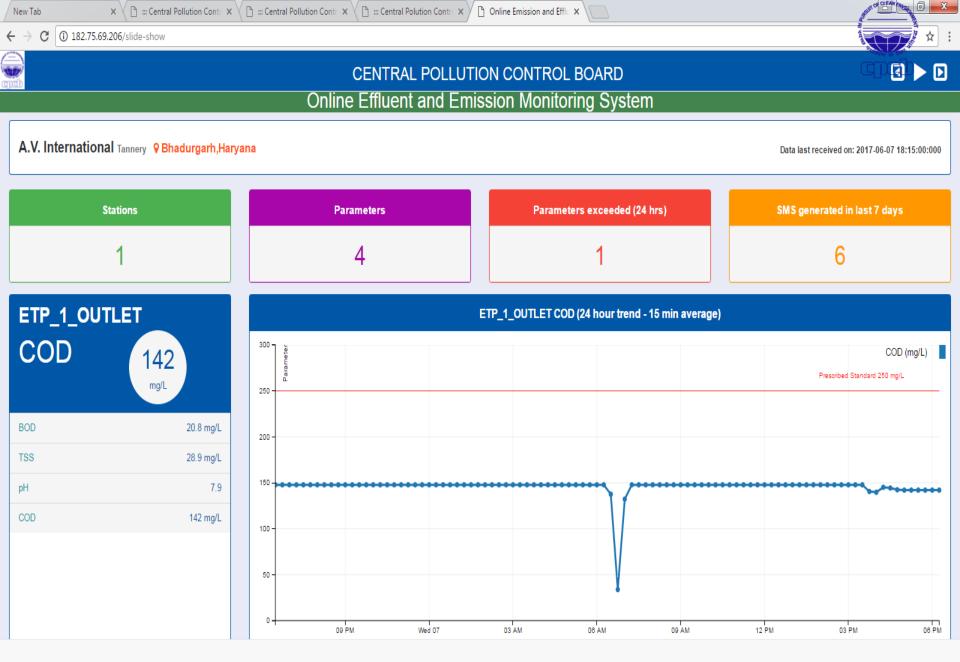

Data Validation

SiteName	Monitoring Type	Monitoring Unit	Analyser
LAKSHMI MACHINE 💌	Emission 💌	STACK_IF 👻	MIP_LM3188
Parameter	Data Quality Code		
PM ···	Raw 💌		
From	То		
30-11-2015 🛗 00:00:00 O	30-11-2015 🛗 15:00:00 O		Fetch 🖺

Validated Data


Event and Annotation Report

Data Visualization Examples of Bad and Doubtful Data


- (OCEMS is either not responding or perhaps tampered or being adjusted illegally)
- Immediate intimation is required
- Field visit is necessary to investigate the issue

Validation Report -- Annotations

GLens - CPCB Consolidated Dashboard

△ 🗍 📶 😼 🔰 7:00 PM

Exceedance in Emission

✓ Any exceedance of values over the prescribed standards or norms shall be considered as violation. ✓ Frequent exceedance of the values i.e. more than 5% of the total data capture in a day of the prescribed standards/norms shall invite action from SPCBs/PCCs

✓Any exceedance of values over the prescribed standards or norms shall be considered as violation.

 Continuous exceedance of values upto 10% over the standards/norms for more than half an hour, shall require preventive action from the industry. ✓ Any exceedance of the monitored values as against the standards shall invite SV/S & email to the industry from SPCBs/PCCs requiring immediate feedback on the corrective action initiated/taken.

✓ In case the emission exceeds continuously the prescribed norms by 10% over the standards and for a duration of one hour or more, the industry shall inform the SPCBs/PCCs of the action initiated to control the emission Exceedance in Emission

In case the industry fails to control the emissions/discharges within the norms it shall move towards closure of its operation following the laid down standard operating practices.

10% of the norms for period exceeding one hour the industry shall immediately move towards closure of its operation under intimation to SPCBs/PCCs. (viii) The values recorded during calibration or during preventive maintenance shall not be considered for exceedance and assessing the data capture rate. (ix) Plant start-up or batch process starting emissions shall not be considered for averaging for the initial. 30 minutes period in case of batch processes or small

Plant shut down period shall be excluded while calculating data capture rate.

THANK YOU

Technologies	Parameters	Applicability
UV Spectrophotometry (Single/two/four wavelengths)	COD, BOD	Fresh Water & Waste Water analysis with constant matrix in water source
UV-Vis Spectrophotometry 40 wavelength	COD, BOD, TSS	Fresh Water & Waste Water analysis with Constant matrix in water source
UV-Visible Spectrophotometry (Single Beam)	COD, BOD, TSS	Fresh Water & Waste Water analysis without interference check and compensation
UV-Vis Spectrophotometry (Double beam with entire spectrum scanning)	COD, BOD, TSS	Fresh water to Waste water analysis Interference check for color and turbidity and compensation.
Combines Combustion Catalytic Oxidation at 680°C and NDIR Method	TOC (Co-relation with BOD & COD)	Fresh Water and Waste Water analysis
UV Persulfate NDIR Detector	TOC (Co-relation with BOD & COD)	Fresh Water & Waste Water analysis
Persulfate Oxidation at 116-130degC NDIR Detector	TOC (Co-relation with BOD & COD)	Fresh Water & Waste Water analysis
Measuring COD using Potassium dichromate(K2Cr2O7) + Calorimetric	COD	Fresh Water & Waste Water analysis
Electrode /Electrochemical method	рН	Fresh water & Waste Water analysis
Scattered Light Method (IR)	TSS	Fresh water & Waste Water analysis
Nephelometry Method	TSS	Fresh Water & Less turbid water analysis
Colorimetric (645-655nm)	NH3	Process stream & Waste Water analysis. Turbidity interference is there which can be overcome
Ion Selective Electrode method With temp correction	NH3	Process stream & Waste Water analysis. Turbidity interference is there which can be overcome.
UV Absorbance or Multiple Wavelength UV Absorbance Spectrophotometers (200- 450nm)	NH3	Process stream & Waste Water analysis. Turbidity interference is there which can be overcome.
Colorimetric method Reaction of Cr-VI with diphenyl carbazide in acid solution	Chromium	Fresh Water & Waste Water analysis.
Voltammetry (Anodic Stripping Voltammetry)	Chromium	Fresh Water analysis.
Dual Beam UV-Visible Spectrophotometry	Chromium Hexavalent and Trivalent	Fresh water & waste water analysis.
Voltammetry (Anodic Stripping Voltammetry)	Arsenic	Fresh Water analysis.